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Abstract 

In the coming years, public programs will continuously capture even more and richer data 

than they do now, including data from web-based tools used by participants in employment 

services, from tablet-based educational curricula, and from electronic health records for 

Medicaid beneficiaries, for example. Policy evaluations seeking to take full advantage of the 

volume and velocity of these data streams will require novel statistical methods. In this paper, we 

present just such a method, a Bayesian approach to randomized policy evaluations that 

efficiently estimates heterogeneous treatment effects, identifying what works for whom. The 

approach enables evaluators to consider multiple candidate interventions simultaneously, 

matching each study subject with the intervention that is most likely to benefit him or her. The 

trial design adapts to accumulating evidence: over the course of a trial, more study subjects are 

allocated to treatment arms that are more promising, given the specific subgroup from which 

each subject comes. Using a randomized experiment of students in an online course as a 

motivating example, we conduct a simulation study to identify the conditions under which our 

Bayesian adaptive design can produce better inference and ultimately smaller trials. In particular, 

we describe conditions under which there is more than a 90 percent chance that inference from 

the Bayesian adaptive design is superior to inference from a standard design, using less than one-

third the sample size. Under the right circumstances, then, the Bayesian adaptive approach we 

propose can channel streams of big data to efficiently learn what works for whom. 
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A. Introduction 

We are caught in a data deluge, with unprecedented volumes of information being collected 

every day to measure policy innovations, their implementation, and the resulting outcomes. 

These data have great potential not only to expand our knowledge of what policies work at the 

population level, but also for exploring the frontier of what works for whom, studying 

heterogeneous treatment effects across specific subgroups of the population. 

Randomized controlled trials (RCTs) are the gold standard for determining what works, 

providing valid causal inference that nonrandomized designs can only approximate, at best. But 

standard RCTs can be time consuming and expensive (Luce et al., 2009). Moreover, using RCTs 

to understand what works for different subgroups of program participants will increase both the 

time and budget required for a standard RCT.  

Bayesian approaches to RCTs can help leverage big data more efficiently. In this paper, we 

present a Bayesian approach to social policy RCTs that adapts to accumulating evidence: over 

the course of the trial, more study subjects are allocated to treatment arms that are more 

promising, given the specific subgroup that each subject comes from. This approach, which is 

based on the design of two recent clinical drug trials (Barker et al., 2009; Kim et al., 2011), 

provides valid estimates of heterogeneous causal effects sooner and with smaller sample sizes 

than would be required in a traditional RCT. To our knowledge, this strategy has not yet been 

applied to social policy research.  

The need to understand what works for whom is pressing. Consider the wide array of public 

programs currently evaluated through RCTs: employment services for the unemployed, 

education tools for struggling readers, and supportive services for adolescents on Medicaid, to 

name a few. With a precise understanding of what works for whom, each of these programs 

could be better targeted to specific subgroups. Which employment strategies are more effective 

for long-term unemployed individuals, and which are more effective for dislocated workers? 

Which reading interventions work best for dyslexic students, and which for students with 

attention-deficit/hyperactivity disorder? Which strategies reduce pregnancy risk for adolescent 

Medicaid beneficiaries for whom English is their first language, and which are effective for 

English-as-a-second-language speakers? In the coming years, all of these programs will capture 

more and richer data than they do now, including data from web-based tools used by participants 

in employment services, from tablet-based educational curricula, and from electronic health 

records for Medicaid beneficiaries. Under the right circumstances, the Bayesian adaptive 

approach we propose can channel these streams of data to determine what works for whom, 

doing so more efficiently than a non-Bayesian approach. 

But we do not need to wait for the future to see big data. Online education generates massive 

amounts of data that can be harnessed to understand key effectiveness questions. In this paper, 

we use the online education context as an illustrative example to examine the benefits and 

limitations of Bayesian adaptive design compared to the standard approach of randomizing with 

equal probability to each treatment arm throughout a study. In particular, we simulate a series of 

experiments to answer the following research questions:  
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1. Does the Bayesian adaptive design succeed in allocating its experimental subjects to more 

effective treatment arms? 

2. Does the Bayesian adaptive design produce better final inference? 

3. Can the Bayesian adaptive design learn earlier and with smaller sample sizes what works for 

whom? 

Throughout, we focus on identifying the conditions under which the Bayesian adaptive 

design outperforms conventional methods according to each of these three criteria. 

We first describe a particular online education experiment that motivates the analyses 

presented in this paper. We then detail the specific adaptive randomization algorithm that we 

propose. We present the methods and results of a simulation study that compares Bayesian 

adaptive versus standard randomized design. We then briefly describe two possible extensions of 

the method and conclude with a discussion of the limitations of the proposed approach. 

B. Data and methods 

Martinez (2015) conducted a nonadaptive randomized trial of students in a massive open 

online course to test whether changes in the way programs communicate with students can 

improve course completion rates. The RCT generated vast amounts of data on more than 23,000 

course participants from 169 countries.1 In the final week of the course, students in the 

intervention arm received an email 'nudge' describing the negative correlation between 

procrastination and achievement. These students were 17 percent more likely to complete the 

course successfully the following week than students in the control group (p < 0.01). 

Additionally, in a post-hoc analysis, Martinez found that the treatment effect was heterogeneous 

across countries. For example, Germans assigned to the intervention arm were 167 percent more 

likely to complete the course (p = 0.04), but no effect was found for students from the United 

States (p = 0.94). Inspired by the rich data collected in this study and the evidence of 

heterogeneous effects, the current paper presents a simulation study investigating the potential 

advantages of conducting this experiment using a Bayesian adaptive design. 

To allow analysis of what works for whom, we begin by envisioning a multiarm version of 

this two-arm trial. We ask, for example: Had the original design included additional treatment 

arms, would it have identified an effective intervention for students from the United States or 

from other countries that did not benefit from the intervention implemented in Martinez’s study? 

In particular, we consider four nudging strategies at once and one control arm, and over the 

course of the (simulated) experiment attempt to match nudging strategies with the countries 

whose students are most likely to respond to them. 

We consider a six-week course in which 26 cohorts of students participated over the course 

of a year, with start dates spaced two weeks apart. In the fifth week of each cohort, students who 

                                                 
1
 The Foundations of Business Strategy (FBS) course is taught by Professor Michael J. Lenox of the University of 

Virginia and explores the underlying theory and frameworks that contribute to a successful business strategy. 

Martinez’s study included those students who enrolled in the January-February 2014 FBS course via Coursera, one 

of the most popular massive open online course platforms, and who indicated at the time of enrollment that they 

intended to complete all coursework. 
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have been randomized to an intervention receive a ‘nudge,’ encouraging them to finish all 

assignments. The outcome of interest is successful completion of the course in week 6. As shown 

in Figure 1, this schedule assumes that outcomes from any given cohort are observed in time to 

inform randomization of the next cohort. We discuss two ways to loosen this assumption in the 

Discussion.  

Figure 1. We consider a six-week course in which 26 cohorts of students 

participated over the course of a year, with start dates spaced two weeks 

apart. For illustrative purposes, we show the first 3 of 26 cohorts here 

 

To answer our research questions, we compare two possible five-arm designs via simulation. 

The specific approach we use to simulate synthetic data sets under each of these designs is 

described in the next section. The remainder of this section describes the two designs: (1) a 

standard five-arm randomized design that uses equal randomization probabilities of 20 percent 

per arm throughout the study, and (2) a Bayesian adaptive design in which information gleaned 

in the earlier stages of the trial influences which nudging strategies are used in each country later 

in the trial such that—as the study progresses and we learn what works for whom—each subject 

has an increasing probability of being randomized to the treatment arm that is most effective in 

his or her country. By concentrating the sample size in those country-by-strategy pairs that seem 

most promising, we aim to increase our power to identify the most effective strategy in each 

country.  

Under the Bayesian adaptive design, starting with cohort 1, we thus pursue the goal of 

learning which nudging strategy is most effective for students from each country, as shown in 

Figure 2.  
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Figure 2. In each country, as evidence accumulates during the course of a 

Bayesian adaptive trial, more students are randomized to the treatment arms 

that are most promising 

 
Note: At baseline (corresponding to weeks 0‒5 in Figure 1), students from cohort 1 enroll and we randomize them 

to one of five treatment arms and nudge accordingly. At time 1, (corresponding to weeks 6 and 7 in Figure 
1), we observe the course completion outcomes of students from cohort 1 and we randomize and nudge 
students from cohort 2. At time 2, (corresponding to weeks 8 and 9 in Figure 1), we observe the course 
completion outcomes of students from cohort 2 and we randomize and nudge students from cohort 3. 

We learn as we go, adapting our randomization scheme as follows: 

 Before the course begins, what works for whom is not known, so randomize cohort 1 with 

20 percent probability to each of the five arms, and nudge accordingly. 

 Observe who from cohort 1 completes the course. 

 Use these data to update our understanding of which intervention arm is most effective for 

students in each country, by fitting a Bayesian model to the data from cohort 1. The model is 

described in the Appendix. 

 For cohort 2, randomize students according to this updated understanding, with students 

randomized preferentially to the treatment arms that—based on the accumulated data—are 

estimated to be most effective in their country. 

 Observe who from cohort 2 completes the course. 

 Use these data to update our understanding again, by refitting the model to the data set that 

now includes students from cohorts 1 and 2. 

 Randomize cohort 3 accordingly. 
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 Observe who from cohort 3 completes the course. 

 Continue to adapt the randomization scheme in this fashion for cohorts 4 through 26. 

Although some current approaches to policy evaluation are adaptive in limited ways (for 

example, those with early stopping rules if an intervention is wildly successful or clearly 

harmful), the standard, frequentist statistical paradigm inhibits flexible adaptation with its 

requirement that all possible study outcomes be prespecified. Under the Bayesian paradigm, by 

contrast, researchers are only required to prespecify—using formal, probabilistic statements of 

uncertainty—how a design will change as evidence accumulates (Berry, 2006; George et al., 

1994). In this way, the Bayesian approach learns continually from every cohort’s outcomes 

rather than incorporating new information only at widely spaced intervals. We will show that this 

flexibility facilitates efficient determination of what works for whom by making optimal use of 

data as they are collected. 

We pair this Bayesian adaptive design with a hierarchical Bayesian approach to analysis. 

This approach enables us to ‘borrow strength’ across countries, refining our understanding of an 

intervention’s effectiveness for each specific country by drawing on data from other countries in 

the region, to the extent that the data support such a linkage. For example, in inferring whether a 

given nudging strategy is effective in India, we take a weighted average of the proportion of 

Indian course completers who received the nudge with the proportion of South Asian course 

completers who received the nudge. The weights are not specified in advance, but rather 

determined by (1) the degree of concordance across results from different countries within a 

region and (2) the strength of the evidence based on data for Indian students alone. More weight 

will be assigned to the contextual region-level (i.e., South Asian) data in those cases with a high 

degree of concordance or when the country-specific (i.e., Indian) evidence is weak, for example 

due to a small sample size in India. Similarly, inference for any specific region draws on data 

from the other regions of the world. For example, because the course Martinez studied included 

only eight students from the region of Oceania, the Bayesian hierarchical model borrows strength 

from other regions to make estimates in those small island nations. Borrowing strength across 

countries within a region and across regions of the globe—to the extent determined by the data—

can produce more precise, more predictive inference (Gelman et al., 2014) and ultimately 

smaller, less costly trials (Berry et al., 2010). 

C. Simulation study 

To compare the Bayesian adaptive design’s performance to that of the standard method of 

subject allocation in randomized trials, we simulate and analyze synthetic data sets. To identify 

the conditions under which the Bayesian adaptive design produces benefits, we simulate data sets 

under each of nine scenarios characterized by different sample sizes and different effect sizes. 

However, acknowledging that in any given simulated data set the Bayesian adaptive design 

might perform better or worse than the standard design just by chance alone, we conduct 1,000 

simulations of each of the two designs in each of the nine scenarios. In each scenario, we thus 

simulate and analyze 1,000 synthetic data sets using the standard approach and 1,000 synthetic 

data sets using the proposed approach.  

For each simulation, we assume a true course completion rate in each country under each of 

the five treatment arms. For example, in the control arm in the United States, the first simulation 
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might assume that the true course completion rate is 4 percent. We then generate two synthetic 

data sets, one under the Bayesian adaptive design and one under the standard design. In each 

case, we randomly assign computer-generated ‘students’ to each of the five treatment arms, with 

randomization probabilities chosen for each design as we describe in the Methods section. We 

randomly generate simulated course completion outcomes for each synthetic student in each data 

set, with probability corresponding to the assumed truth, given the student’s country and 

assigned treatment arm. For example, if the first synthetic student from the first simulation was 

from the United States and was randomized to the control arm, with 4 percent probability we 

would say that the student had completed the course and with 96 percent probability we would 

say that the student had not completed the course. For simplicity, the simulation design assumes 

that each cohort comprises 1/26 of the total sample size. 

In choosing the true course completion rates, we assume that—on average across 

countries—two of the intervention arms are effective and two are no more effective than control. 

As we will show in the Results section, the difference in the probability of course completion of 

students assigned to effective versus ineffective arms is an important determinant of the 

performance of the Bayesian design. We therefore consider three values of this difference. In 

addition to these mean effect sizes, we assume regional and country-level heterogeneity, to allow 

some interventions to be more or less effective in some regions or countries than others, with the 

magnitude of heterogeneity chosen to reflect the true amount of heterogeneity that Martinez 

observed. The Appendix details the process through which we induce this heterogeneity. We also 

consider three possible sample sizes. The pair-wise combinations of mean effect size and total 

sample size characterize the nine scenarios we consider to assess the conditions under which our 

Bayesian approach performs more and less well. The values of each factor that we consider are: 

 Mean effect size (i.e., the difference in the probability of course completion of students 

assigned to effective versus ineffective arms), averaging across countries: small, medium, 

and large, as detailed in the Table.  

 Sample size: 10, 50, and 100 percent of the actual sample size of 23,461 students. 

Table. Three possible values of the difference in the probability of course 

completion of students assigned to effective versus ineffective treatment 

arms 

Mean effect size, 
averaging across 
countries 

Probability of course completion (%)  

Ineffective arms Effective arms Difference 

Small 4.6 5.3 0.8 
Medium 4.6 8.5 3.9 
Large 4.6 13.3 8.7 

Note: The probabilities of course completion given a small mean effect size are equal to those observed by 
Martinez. For the medium and large mean effect sizes, the difference values were chosen to be 0.5 and 1 
units greater on the logit scale than the treatment-control difference observed by Martinez. Throughout, we 
assume that—on average across countries—two of the intervention arms are effective and two are no more 
effective than the control. 
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D. Results 

In this section we show that Bayesian adaptive design offers a promising new approach for 

improving policy evaluation. In particular, we demonstrate advantages against the standard 

approach in terms of (1) the successful allocation of experimental subjects to more effective 

treatment arms, (2) the final inference produced, and (3) the total sample size required.  

Does the Bayesian adaptive design succeed in allocating its experimental subjects to more 

effective treatment arms? 

The Bayesian adaptive design takes advantage of the information learned during the course 

of the experiment, successfully assigning more students to more effective treatment arms during 

the trial. Figure 3 shows that, as a result, it nudges more of its experimental subjects to complete 

the course than does the standard design. This is the case in at least 50 percent of simulations for 

all nine combinations of sample size and mean effect size that we consider, as shown in the 

figure using horizontal black lines in the middle of each box plot. For five of the nine 

combinations (when the mean effect size is large, and—for the full sample size and for 50 

percent of the full sample size—when the effect size is medium), this is the case in all 1,000 

simulations. In these five scenarios, we observe median increases of at least 30 percent in course 

completion rates among experimental subjects.  

Figure 3. The Bayesian adaptive design successfully allocates its 

experimental subjects to more effective treatment arms than the standard 

design 

 
Note: For each of the nine scenarios considered, a boxplot summarizes the distribution across 1,000 simulations 

of the percent change in the course completion rate of experimental subjects of the Bayesian adaptive 
design compared to the standard design. For example, a y-axis value of 20 percent indicates a simulation 



WORKING PAPER 40 MATHEMATICA POLICY RESEARCH 

 

 
 

9 

in which the course completion rate of experimental subjects is 20 percent higher under the Bayesian 
adaptive design than under the standard design. In each boxplot, the horizontal black line depicts the 
median of the distribution; the upper and lower "hinges” depict the 25th and 75th percentiles; the “whiskers” 
extend from the hinges to the most extreme values that are within 1.5 times the inter-quartile range; outliers 
beyond the end of the whiskers are plotted as points. 

Across sample sizes, we note that the Bayesian adaptive design is especially successful at 

increasing the course completion rate of its experimental subject when the mean effect size is 

large. This is because when effect sizes are larger, the effective treatment arms to which the 

Bayesian design succeeds in allocating its subjects are associated with higher probabilities of 

course completion.  

Does the Bayesian adaptive design produce better final inference? 

We next turn to the important question of whether the Bayesian adaptive design produces 

better final inference than the standard design. We quantify the quality of the final inference 

using the following measure of predictive performance: Based on the final inference from the 

Bayesian adaptive design, choose a 'best' nudging strategy in each country. Now enroll a new 

cohort of students in the next edition of the course. Nudge each student using the chosen strategy 

for his or her country. How many more students from this new cohort would be expected to 

complete the course using this strategy than had their nudge been chosen based on inference 

from the standard design?  

As shown in Figure 4, the Bayesian adaptive design outperforms the standard design by this 

metric in at least 50 percent of simulations for all nine combinations of sample size and mean 

effect size that we consider. It performs better in at least 95 percent of simulations in four of the 

nine scenarios (for the full sample size and for 50 percent of the full sample size, when the mean 

effect size is medium or large). These gains are achieved because the Bayesian adaptive 

design—by concentrating sample size in those treatment arms that seem most promising—

achieves more power to compare successful treatments that differ in effectiveness only slightly. 

This higher power enables the Bayesian adaptive design to distinguish among successful 

treatment arms, ultimately identifying the most effective.  

Whereas Figure 3 showed large benefits of the Bayesian adaptive design for large effect 

sizes, this metric shows the biggest gains for medium effect sizes. This is because, given large 

effect sizes, the standard design can often successfully identify the best treatment arm, leaving 

less room for improvement.  
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Figure 4. The Bayesian adaptive design produces better final inference than 

the standard design 

 
Note  For each of the nine scenarios considered, a boxplot summarizes the distribution across 1,000 simulations 

of the percent change in the course completion rate based on inference from the Bayesian adaptive design 
compared to inference from the standard design. For example, a y-axis value of 20 percent indicates a 
simulation in which the course completion rate increases by 20 percent if you choose which arm to assign 
students to based on the results of the Bayesian adaptive design versus if you choose based on the results 
of the standard design. In each boxplot, the horizontal black line depicts the median of the distribution; the 
upper and lower "hinges” depict the 25th and 75th percentiles; the “whiskers” extend from the hinges to the 
most extreme values that are within 1.5 times the inter-quartile range; outliers beyond the end of the 
whiskers are plotted as points. 

We now consider which types of countries benefit most from the Bayesian adaptive design, 

in terms of the final inference produced. We consider only a single combination of sample size 

and mean effect size: the full sample size with small mean effect sizes, corresponding to the 

actual conditions of Martinez’s study. Figure 5 shows that the Bayesian adaptive design produces 

better inference in all countries, that the benefits are largest in countries with around 

100 students, and that there are diminishing returns in very large countries, where large sample 

sizes enable the standard design to successfully identify the best treatment arm.  
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Figure 5. The Bayesian adaptive design produces better inference than the 

standard design in all countries, and the benefits are largest in medium-sized 

countries 

 

Note: Averaging across the 1,000 simulations, we show the percent change in each country of the course 
completion rate based on inference from the Bayesian adaptive design compared to inference from the 
standard design. For example, a y-axis value of 20 percent indicates a country in which the course 
completion rate increases by an average of 20 percent if you choose which arm to assign students to based 
on the results of the Bayesian adaptive design versus if you choose based on the results of the standard 
design. The x-axis shows the country’s sample size. We consider only a single combination of sample size 
and mean effect size (the full sample size with small mean effect sizes, corresponding to the actual 
conditions of Martinez’s study). The blue line shows a loess smooth, and the grey shading shows a 95 
percent confidence interval around the smooth. 

Can the Bayesian adaptive design learn earlier and with smaller sample size what works 

for whom? 

Our final analysis determines how early in the study the Bayesian adaptive design learns 

what works for whom. In particular, using the same metric of predictive performance, we 

compare inference produced by the Bayesian adaptive design after each cohort of students is 

enrolled to the inference produced by the standard design after the full experiment. Figure 6 

indicates a high probability that inference from the Bayesian adaptive design after enrolling only 

a small number of cohorts is superior to the inference that the standard design achieves after the 

full experiment. In particular, in all nine scenarios, there is at least a 50 percent chance that 

inference from the Bayesian adaptive design after enrolling only 6 cohorts already surpasses 

inference produced by the standard design after enrolling all 26 cohorts. For the full sample size 

and for 50 percent of the full sample size, when the mean effect size is medium or large, there is 
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more than a 90 percent chance that inference from the Bayesian adaptive design after enrolling 

only 7 cohorts surpasses inference produced by the standard design after enrolling all 26 cohorts. 

Figure 6. The Bayesian adaptive design learns what works for whom earlier 

in the study than the standard design 

 
Note: We compare the two designs using the following measure of predictive performance. Based on the 

inference from the Bayesian adaptive design after collecting X cohorts worth of data, choose a 'best' 
nudging strategy in each country. Now enroll a new cohort of students in the next edition of the course. 
Nudge each student using the chosen strategy for his or her country. Would more students be expected to 
complete the course using this strategy than had their nudge been chosen based on inference from the 
standard design after collecting all 26 cohorts’ worth of data? After each cohort, in each simulation, we 
determine whether the Bayesian adaptive design would produce better inference by this metric. We 
calculate the probabilities shown here as the proportion of simulations for which this is the case. For 
example, for an x-axis value of 10 cohorts, a y-axis value of 60 percent indicates that in 60 percent of 
simulations, course completion rates based on analyzing 10 cohorts’ worth of data from the Bayesian 
adaptive design were higher than those based on an analysis of all 26 cohorts’ worth of data from the 
standard design. 

E. Extensions 

In this section, we briefly present two possible extensions to this design. First, we consider 

the case in which not all treatment arms are equally costly. A feature of the Bayesian paradigm is 

that is ideally suited for formal decision analysis that explicitly considers the costs of different 

approaches. For example, rather than adapting randomization based on the probability that a 

given treatment arm is the most effective in a given country, we could instead adapt based on the 

probability that each of three candidate treatment arms was at least X times as effective as the 

control, while adapting randomization to a fourth expensive candidate treatment arm based on 

the probability that it outperformed the next best option by at least Y fold, with X and Y 

reflecting the relative monetary and nonmonetary costs of each intervention. 

Second, we consider extending the proposed method to rapid-cycle evaluation (RCE), which 

tests whether changes to a program’s operations result in better outcomes. Program 
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administrators can use RCE to test changes in when, where, or how they provide services; 

changes to their administrative procedures; and even changes to how they communicate with 

program participants. In many situations, program administrators want to know which 

operational approaches work best for which types of participants. The goal is often not to provide 

a one-time, summative assessment of an entire program but rather to provide ongoing decision 

support to program administrators for continual quality improvement. 

Adaptive design is uniquely well suited to RCE. The Bayesian adaptive framework could be 

incorporated into RCEs to test multiple changes with the goal of identifying heterogeneous 

treatment effects. To determine when sufficient evidence has amassed that a given intervention is 

effective, rigorous decision rules could be incorporated into the Bayesian adaptive design 

described in this paper; at this point, the intervention would graduate from the evaluation and be 

incorporated into daily program operations. Conversely, if sufficient evidence amasses that a 

given intervention is ineffective, that arm could be closed. As effective approaches graduate and 

ineffective approaches are dropped from the RCE, this would make room for newly available 

interventions, without having to restart the evaluation. In this way, Bayesian adaptive design 

would allow RCE experiments to be integrated into the ongoing flow of program operations. By 

building such a platform for continuous improvement into program operations, administrators 

could be sure that they were always comparing the alternatives most relevant to current 

decisionmaking. 

F. Discussion 

Although Bayesian adaptive design can be applied to a variety of programs, the programs 

must have two things in common: (1) rolling enrollment and (2) outcomes that can be observed 

soon enough to permit adaptation of the trial design. Regarding the second requirement, recall 

that the simulation study presented here assumes that we are able to observe the outcome of 

interest for all students in a given cohort before randomizing students from the next cohort. 

However, we note that the method is generalizable to instances when this is not the case. If more 

time were needed between the intervention and measurement of the outcome, we could structure 

things differently. For example, outcomes from cohort 1 could inform randomization of cohort 5; 

outcomes from cohorts 1 and 2 could inform randomization of cohort 6; and so on. Alternatively, 

unobserved final outcomes could be imputed based on intermediate outcomes to permit 

adaptation of the trial design before final outcomes become observeable. 

In addition to these two restrictions, another important challenge of applying the proposed 

methodology is an operational one. The program under investigation must be able to pivot 

quickly, continuously accommodating new data as they become available.  

The example presented here examines heterogeneous effects by subgroups, but Bayesian 

adaptive design could also be used to determine the relative effectiveness of treatments 

population-wide. However, to the extent that subgroups are of interest, they present additional 

methodological requirements. In particular, the subgroups must be observable at baseline, and 

they must explain at least a portion of the heterogeneity of effects. 

To successfully carry out Bayesian adaptive design, researchers will require access to 

powerful computational resources. Because simple sample size formulas for complex Bayesian 

hierarchical models do not exist, the properties of a given design are assessed via simulation, as 
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we have done here. Even for 'small data' trials, Bayesians must thus perform 'big data' 

simulations at the design phase. Furthermore, Bayesian software is not as refined as frequentist 

software (e.g., SAS, Stata). It is therefore often the case that Bayesian statisticians must code 

their own computational routines by hand, which is time consuming and requires validation. 

Lastly, many Bayesian models are fit using iterative algorithms that often require longer 

computer run times than their frequentist counterparts. These three factors combine to create a 

substantial computational burden. For example, the results presented in this paper required more 

than 1,000 core-hours on Amazon’s Web Services platform.  

Bayesian statistical computing is a very active area of research, however, with revolutionary 

new computational techniques developed just in the past decade. Such techniques, coupled with 

important advances in high-speed computing, have made the current study computationally 

feasible. We foresee and look forward to a time in the near future when further progress renders 

computational constraints even less salient. 

G. Conclusion 

In this era of big data, the demand for policy evaluations that are simultaneously cheaper 

and more informative is increasing. In particular, there is demand for researchers to take full 

advantage of the volume and velocity of data that are now routinely collected during policy 

research, to efficiently answer the important question of what works for whom. A danger is that 

this demand might tempt researchers to abandon the rigorous methods such as RCTs that are 

crucial for making valid causal inference about program impacts. In this paper, we presented a 

novel Bayesian approach that produces better inference more efficiently than the standard 

approach, without sacrificing crucial methodological principles. 
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